

# What is Pavement Management?: Plain Language Version

- When (PM 101)
- Which roadways (PM 101)
- OWhat treatment (PM 101)
- How much money (PM 102)
- Systemwide planning (PM 102)

To make these decisions, we must first know the "why"

#### **FAST**

#### Florida's Analysis System for Targets

- O How much money?
  - Statewide Resurfacing \$ = Cost of keeping SHS at 80% non-deficient
  - Old way (prior to 2009): ≈ 5.3% of statewide lane miles, distributed based on current deficiencies
  - 2008 Resurfacing Task Team

    FAST
    - More detailed forecasts allow for analysis of many different funding scenarios
    - From FY 2010 to FY 2014, over 1800 lane miles were taken out of the work program for a reduction of approximately \$700 million.
    - Lane miles now distributed based on expected deficiencies in new 3<sup>rd</sup> year

3

#### What does FAST provide?

- The ability to calculate future resurfacing allocations based on forecasted conditions.
- Impact analysis for different funding scenarios and policy decisions.
- Prioritized list of candidate resurfacing projects.
- Improved section level condition forecasts of the SHS.

# Why do we use FAST to predict future pavement conditions?

- Previous Department policy was to set targets for the new outer year of the Work Program based on the most recent PCS data.
- Future targets were distributed to each district based on their proportion of the total deficient lane miles in the current year.
- FAST allows the resurfacing lane miles to be allocated using the projected deficiencies for the new outer year of the Work Program.

5

# How does FAST predict future pavement conditions?

 Regression equations based on the historical performance of pavements in each District are used to predict the performance of pavements within that District.







|           |                               |                                          | Propose                                    | Lane IVIII              | e Allocati        | ons for Re                           | surfacing                | FY 2014 -               | FY 2016           |                                      |                          |                         |
|-----------|-------------------------------|------------------------------------------|--------------------------------------------|-------------------------|-------------------|--------------------------------------|--------------------------|-------------------------|-------------------|--------------------------------------|--------------------------|-------------------------|
| FY        | % of Arterial<br>to Resurface | SHS Arterial<br>Lane Miles<br>(Estimate) | SHS Arterial<br>Lane Miles to<br>Resurface |                         |                   |                                      |                          |                         |                   |                                      |                          |                         |
| 2014      | 5.50%                         | 32,657                                   | 1,796                                      |                         |                   |                                      |                          |                         |                   |                                      |                          |                         |
| 2015      | 5.30%                         | 32,664                                   | 1,731                                      |                         |                   |                                      |                          |                         |                   |                                      |                          |                         |
| 2016      | 5.50%                         | 32,690                                   | 1,798                                      |                         |                   |                                      |                          |                         |                   |                                      |                          |                         |
|           |                               |                                          |                                            |                         |                   |                                      |                          |                         |                   |                                      |                          |                         |
|           | FY 2014                       |                                          |                                            |                         | FY 2015           |                                      |                          |                         | FY 2016           |                                      |                          |                         |
| District  | Estimated<br>Size             | Projected<br>Deficient<br>Lane Miles     | Allocation<br>Percentage                   | Lane Mile<br>Allocation | Estimated<br>Size | Projected<br>Deficient<br>Lane Miles | Allocation<br>Percentage | Lane Mile<br>Allocation | Estimated<br>Size | Projected<br>Deficient<br>Lane Miles | Allocation<br>Percentage | Lane Mile<br>Allocation |
| 1         | 5,028                         | 763                                      | 13.7%                                      | 246                     | 5,028             | 757                                  | 15.3%                    | 264                     | 5,033             | 604                                  | 14.1%                    | 254                     |
| 2         | 6,400                         | 857                                      | 15.4%                                      | 276                     | 6,400             | 813                                  | 16.4%                    | 284                     | 6,401             | 917                                  | 21.4%                    | 385                     |
| 3         | 5,685                         | 1,378                                    | 24.7%                                      | 444                     | 5,685             | 1,197                                | 24.1%                    | 418                     | 5,686             | 1,025                                | 23.9%                    | 431                     |
| 4         | 4,160                         | 382                                      | 6.9%                                       | 123                     | 4,164             | 349                                  | 7.0%                     | 122                     | 4,166             | 285                                  | 6.6%                     | 120                     |
| 5         | 5,637                         | 625                                      | 11.2%                                      | 201                     | 5,640             | 550                                  | 11.1%                    | 192                     | 5,654             | 546                                  | 12.7%                    | 229                     |
| 6         | 2,321                         | 703                                      | 12.6%                                      | 227                     | 2,321             | 581                                  | 11.7%                    | 203                     | 2,322             | 446                                  | 10.4%                    | 187                     |
| 7         | 3,426                         | 868                                      | 15.6%                                      | 280                     | 3,426             | 713                                  | 14.4%                    | 249                     | 3,428             | 458                                  | 10.7%                    | 192                     |
| Arterials | 32,657                        | 5,576                                    | 100.0%                                     | 1,796                   | 32,664            | 4,961                                | 100.0%                   | 1,732                   | 32,690            | 4,281                                | 100.0%                   | 1,798                   |
| nterstate | 7,847                         | 262                                      |                                            | 350                     | 7,849             | 305                                  |                          | 450                     | 7,850             | 274                                  |                          | 450                     |
| Turnpike  | 2,147                         | 69                                       |                                            | 75                      | 2,152             | 80                                   |                          | 100                     | 2,152             | 28                                   |                          | 100                     |
| SHS       | 42.651                        | 5.907                                    |                                            | 2.221                   | 42.665            | 5.346                                |                          | 2.282                   | 42.692            | 4.582                                |                          | 2,348                   |

#### Dollar Distribution

- Total dollars available set by policy attempts to balance deterioration vs. rehabilitation: 80%
- Distribution amongst Districts: based on total projected percentage of projected statewide deficiencies, by District

П

#### **FAST Limitations**

- Accurate on a system-wide level
- Section level projections are hit or miss
  - Better than pre-FAST section level projections
  - Use historical performance data of other similar roadways
  - Not accurate enough to rely solely upon for project programming purposes

- Pavement management deals primarily with system-level planning
- System-level planning needs to be applied at the project level
- Scope Development

13

## Project Development

- Proper project scope:
  - Better construction/material prices by buying in bulk
  - Increases efficiency in design and construction
  - Less impact on traveling public



- Begin and End Project Limits:
  - Best practice to match the end project limits of a previously constructed project
  - Field review to ensure that proposed limits make sense
  - Coordinate with other ongoing projects
  - Coordinate with other agencies



- Exceptions:
  - It is okay to except perfectly good pavement sections out of a resurfacing project
  - Remember that any exception areas will have to last until the next resurfacing of the entire roadway
  - Will require maintenance activity or standalone project if exception area doesn't last until next resurfacing



- Which lanes?
  - Almost always resurface both lanes of a two-lane roadway and all travel lanes in a given direction on divided roadways
  - Ramps, accel/decel lanes, parking lanes, turn lanes – usually
  - Paved shoulders, median crossovers often, but adhering to practical design



- Ancillary features:
  - Rest areas
  - Frontage roads
  - Cross streets/side streets
  - Inspection/weigh stations
  - Overpass/underpass roadways



### Pavement Management Summary

- Good pavement management practices allow us to make good decisions about future resurfacing needs
- Resurfacing roads that need to be resurfaced while maximizing usable life
- Decreased cost through increased efficiency
- Positive public perception

